Masterfix Standard blind rivets for special applications

In addition to the standard range of blind rivets, Masterfix offers the supply of many other types of blind rivets for specific applications from stock.

Peel rivets for applications in soft materials such as

Wood

Insulation

Plastics

Plasterboard

TRIFORM rivets for applications in soft materials such as

Wood

Insulation

Plastics

Plasterboard

Grooved rivets for applications in materials such as

Wood

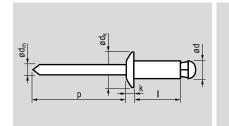
Plastics, e.g. flight cases

HAMMERDRIVE for applications in materials such as

Brick and concrete

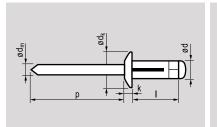
Roofing

Sealing profiles


Insulation industry

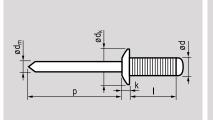
If you are looking for a solution to a specific fastening problem, just contact us. Our Sales department, in cooperation with our Research and Development department, will find a suitable solution for you.

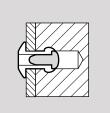
nfo



peel type I dome head

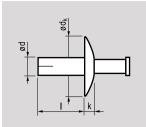
Ø d	[+0,3/-0,2]		Item nr.	Ø d _k	k	Ø d _m	р	<u>+</u>	#
[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[N]	[N]
3,2	8,0	0,5-1,0	13013208				,		
[+/-0,15]	10,0	1,0-3,0	3210						
>>	12,0	3,0-5,0	3212	6,5 [+/-0,2]	1,0 [+/-0,1]	~1,80	≥27	750	820
Ø [3,5 min]	16,0	7,0-9,0	3216						
[3,7 max]	18,0	9,0-11,0	3218						
4,0	10,0	1,5-5,0	13014010		1,2 [+/-0,2]			1.140	1.280
[+/-0,15]	12,0	4,0-6,5	4012			~2,10	≥27		
>>	14,0	6,0-9,0	4014	8,0					
Ø [4,3 min]	16,0	8,0-11,0	4016	[+/-0,4]					
[4,5 max]	18,0	10,0-13,0	4018						
	20,0	12,0-15,0	4020						
4,8	10,0	1,5-4,0	13014810						
[+/-0,15]	12,0	2,0-6,0	4812			~2,70	≥27	2.450	2.100
200	14,0	4,0-8,0	4814						
Ø [5,2 min]	16,0	6,0-10,0	4816						
[5,3 max]	18,0	8,0-12,0	4818						
	20,0	10,0-14,0	4820	9,0 [+/-0,4]	1,4 [+/-0,2]				
	22,0	12,0-16,0	4822						
	25,0	16,0-19,0	4825						
	30,0	19,0-24,0	4830						
	35,0	24,0-29,0	4835						
	40,0	29,0-34,0	4840						



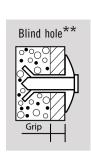


TRIFORM I dome head

Ø d	 [+1/-0,2]	*************************************	Item nr.	Ø d _k	k	Ø d _m	р	*	#
[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[N]	[N]
4,0	13,6	1,0-3,0	13614013		,			,	
[+/-0,1]	18,8	1,0-7,0	4018	8,0 [+/-0,29]	≤1,4	~2,30	≥27	800	600
Ø 4,2 [4,4 max]									
4,8	15,3	1,0-4,0	13614815						
[+/-0,1]	20,5	1,0-9,0	4820	9,6	≤1,6	~2,90	≥27	1.100	800
>>	24,5	4,0-12,0	4824	[+/-0,29]	<u> </u>	~2,90	221	1.100	000
Ø 5,0 [5,2 max]									



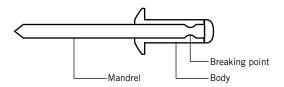

grooved type I dome head


Ø d	 [+1/-0,2]		Item nr.	Ø d _k	k	Ø d _m	р	+	#
[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[N]	[N]
3,2	10,0	Max. 6,0	16013210						
[+0,35/-0]	14,0	Max.10,0	3214	6,0	≤1,4	~1,80	≥27	930	525
200				[+/-0,24]	51,4	~1,00	227	930	525
Ø 3,4									
4,0	8,0	Max. 4,0	16014008						
[+0,35/-0]	10,0	Max. 6,0	4010	8,0	≤1,7	~2,20	≥27	1.410	885
>>	12,0	Max. 8,0	4012	[+/-0,29]	=1,7	~2,20	=27	1.410	003
Ø 4,3	16,0	Max.12,0	4016						
4,8	8,0	Max. 4,0	16014808						
[+0,35/-0]	10,0	Max. 6,0	4810						
>>	11,0	Max. 7,0	4811				≥27	1.575	1.185
Ø 5,1	12,0	Max. 8,0	4812						
	14,0	Max.10,0	4814	9,5	≤2,0	~2,65			
	16,0	Max.12,0	4816	[+/-0,29]	≥2,0	~2,03			
	18,0	Max.14,0	4818						
	20,0	Max.16,0	4820						
	25,0	Max. 21,0	4825						
	30,0	Max. 26,0	4830						

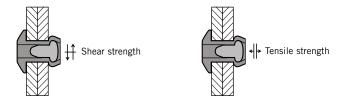
HAMMERDRIVE I extra large head

Ø d	 [+1/-0,2]	Item nr.	 		Ø d _k	k	<u>+</u>	=
[mm]	[mm]		* (e.g. steel) mm	Blind hole** (e.g. concrete) mm	[mm]	[mm]	[N]	[N]
4,8	16	18034816	11,5-13,0	11,0				
[+0,08/-0,15]	20	4820	15,5-17,0	15,0				
	25	4825	20,5-22,0	20,0				
Ø 4,9	30	4830	25,5-27,0	25,0	14,5	2,2 max.	2.600 * 2.200**	4.500
>>	35	4835	30,5-32,0	30,0	[+/-0,5]			
	40	4840	35,5-37,0	35,0				
	45	4845	40,5-42,0	40,0				
	50	4850	45,5-47,0	45,0				

Min. depth for drilling: I + 6,0 mm

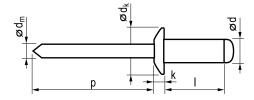


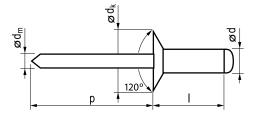
Technical info


Blind rivet breaking point

The rivet is made of two parts namely, the body and the mandrel. The body is deformed when the rivet is set and it is this part which clamps the materials together. The function of the mandrel is to deform the body of the rivet. The mandrel is therefore always stronger than the body. The mandrel breaks off at its specific breaking point. The breaking point ensures that the mandrel breaks off at the right moment so that the body is correctly deformed. The breaking load can be adjusted so that the mandrel breaks at a sooner or a later point of time.

Tensile and shear strength


The tensile strength is the maximum force the rivet, rivet nut or rivet bolt can bear lengthways (see arrows) before it gives out. The tensile strength is obtained through tests and is always the smallest average value. The shear strength is the maximum force the rivet, rivet nut or rivet bolt can bear vertical to its length (see arrows) before it gives out. The shear strength is obtained through tests and is always the smallest average value. By changing the breaking point, the shear strength will be increased or decreased. Both tensile and shear strength are expressed in Newton (1 kg = 10 N).



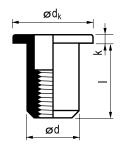
Technical details

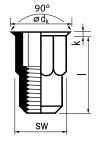
Dimensioning rivets

Standard rivet (all sizes in mm)

 \emptyset d = Rivet body diameter

 \emptyset d_k = Head diameter


 \emptyset d_m= Mandrel diameter


k = Head height

I = Rivet body length

p = Mandrel length

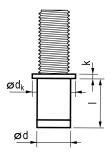
Dimensioning rivet nuts

Standard rivet nut (all sizes in mm)

 \emptyset d = Rivet nut body diameter

 \emptyset d_k = Head diameter

k = Head height


I = Rivet nut body length

sw = Key size

Technical details

Dimensioning rivet bolts

Standard rivet bolt (all sizes in mm)

 \emptyset d = Rivet nut body diameter

 \emptyset d_k = Head diameter k = Head height

I = Rivet nut body length

Technical details

Aluminium AL 99,5

Low weight

Easy to deform

Highly electrical and warmth conductive

Aluminium alloys AIMg

Solid and strong - easy to polish

If the degree of Mg increases, the strength of the rivet increases and the deformability decreases

Steel

Suitable for heavy constructions

Easy to deform

Easy to coat (e.g. with anti-corrosion coating)

Stainless steel

Highly resistant to corrosion

Suitable for heavy constructions

A4 has a higher resistance to acids than A2

Copper

Highly electrical and warmth conductive

Easy to deform

Suitable for soldering

Material features

Contact corrosion

When different metals come in contact with each other, contact corrosion will arise. The table below shows how the different materials combine.

Material	Material to be connected							
rivet body	Aluminium	Copper	Steel	Stainl.steel				
Aluminium	++		+	+				
Copper		++		+				
Steel	+		++	++				
Stainl. steel	+	+	++	++				
i Monell"		+	++	+				

++ very good I + good I - moderate I -- bad

Coatings

Corrosion can never be reduced to 0%. However, coatings can help to reduce the chance of corrosion or delay corrosion:

Painting

2-Components painting is possible in many colors. All RAL-colours can be delivered on request.

Zinc plating

This is a coating obtained through electrolysis and consists of a Zinc-iron alloy. This coating is characterized by a high resistance to wear and tear.

Material features

Edition September 2015